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work by Vidal and Theis! that has significant overlap with ours.
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Using quantum models for learning tasks is one of the key fields where
NISQ devices are hoped to bring forth a guantum advantage

A lot of work has been done to understand the practical side, but little is
known on the theory side

So we asked ourselves: What functions can such models learn?
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Output State of the Quantum Model

The eigenvalues of the generator determine the frequencies

and the frequencies accumulate between layers:
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Output of the Quantum Model

Output is expectation value and therefore contains a complex conjugation

fare(x) = (Yo(x)|Mhg(z)) = Y  cu(M,0)e™"

wel)
For L layers of encoding

Q:{)\Jl _|__|_)\JL _)\kl __)\k[, |Ajla)\k:l EspeC(H)}

The accessible spectrum consists of
all sums of differences of eigenvalues of
the generator of the data encoding
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Quantum learning models output
-ourier series, repeated data encoding
gives access to higher frequencies
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Pauli-Encodings

Pauli rotations are the most popular encoding strategy, e.qg.
S(z) = Ry(z) = e ®%/2

Pauli rotations give an integer spectrum
The number of available frequencies grows linearly in depth and width

But for general encodings the dependence can be exponential:

J2L d System dimension
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https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series.html
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Generalization Bounds

We want to qguantify how good a trained learning model performs

| Oss

Measures the quality of the
learning model’s predictions

| |

Risk Empiricial risk
Model loss averaged over the Model loss averaged over the
data distribution training data

Generalization
bound

Holds with high probability
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Deriving a Generalization Bound

Generalization bounds reflect the ,complexity” of the model

The more different functions the model can learn, the more training data
we need

Can be made explicit via covering numbers:
How many points do | need such that any possible output of the learning
model is e-close to at least one point?

We exploit the Fourier representation to derive covering numbpers that
depend explicitly on the data-encoding strategy



Results



Results

Models that use fixed Hamiltonians have a generalization bound that
scales polynomially in the number of gates, guaranteeing efficient learning



Results

Models that use fixed Hamiltonians have a generalization bound that
scales polynomially in the number of gates, guaranteeing efficient learning

Models using arbitrary Hamiltonians can have a generalization bound that
scales exponentially
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ake-Home Message

Quantum learning models with fixed
Hamiltonians can learn efficiently




Thank you for your attention!
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