QTML 2022

Exploiting Symmetry in Variational QML

JOHANNES JAKOB MEYER, FU BERLIN

Based on arXiv:2205.06217

Exploiting symmetry in variational quantum machine learning

Johannes Jakob Meyer, ¹ Marian Mularski, ^{1,2} Elies Gil-Fuster, ^{1,3} Antonio Anna Mele, ¹ Francesco Arzani, ¹ Alissa Wilms, ^{1,2} and Jens Eisert ^{1,4,3}

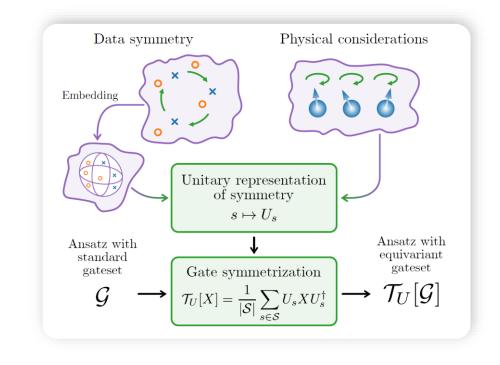
¹ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

² Porsche Digital GmbH, 71636 Ludwigsburg, Germany

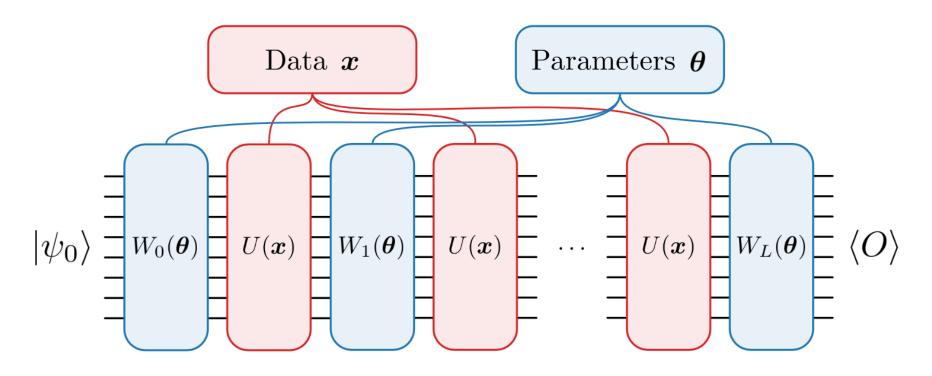
³ Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany

⁴ Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany

(Dated: May 12, 2022)



Variational Learning Models



How should we

- * design the data embeddings?
- * parametrize the trainable layers?

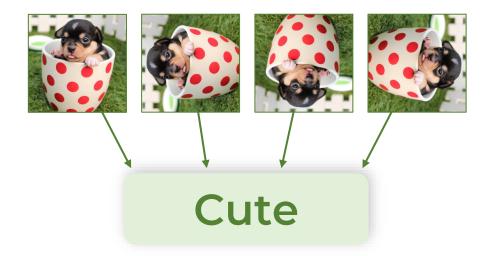
 \longrightarrow

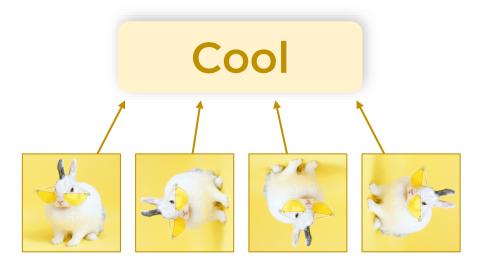
Strong need for **informed** constructions!

The Case for Symmetry

Cool

The Case for Symmetry





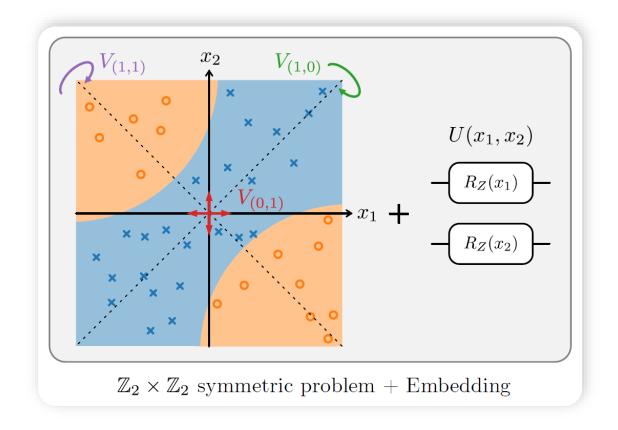
Label invariance under a symmetry group

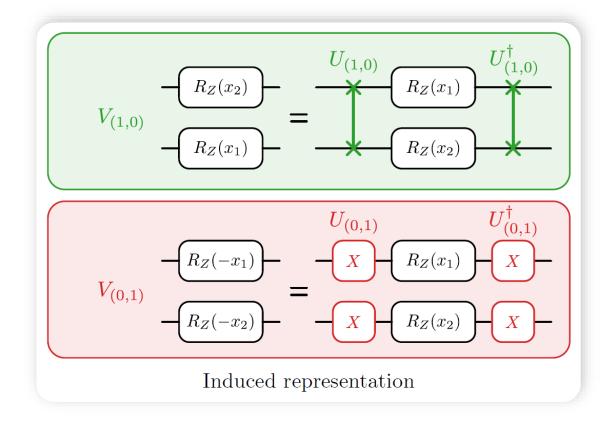
$$y(V_s[\boldsymbol{x}]) = y(\boldsymbol{x}) \ \forall s \in \mathcal{S}$$

Extensively studied in classical machine learning in the field of **Geometric Deep Learning**

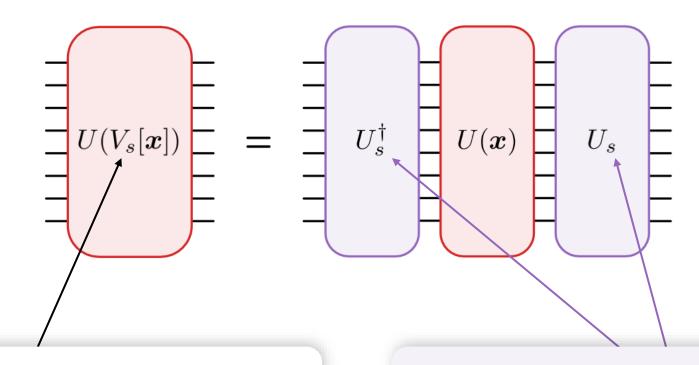
Symmetries and Embeddings

How do symmetries manifest when data is embedded in a quantum circuit?





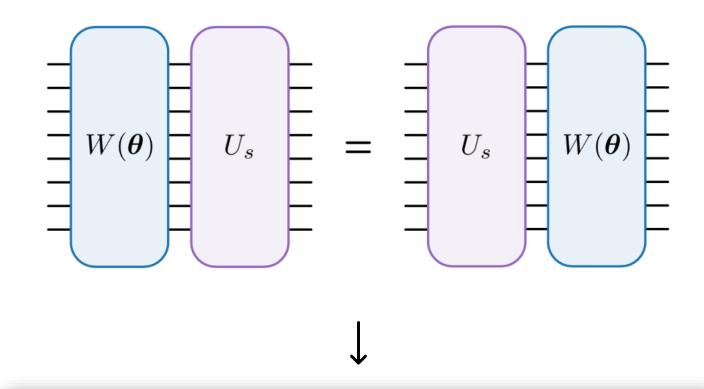
Equivariant Embeddings



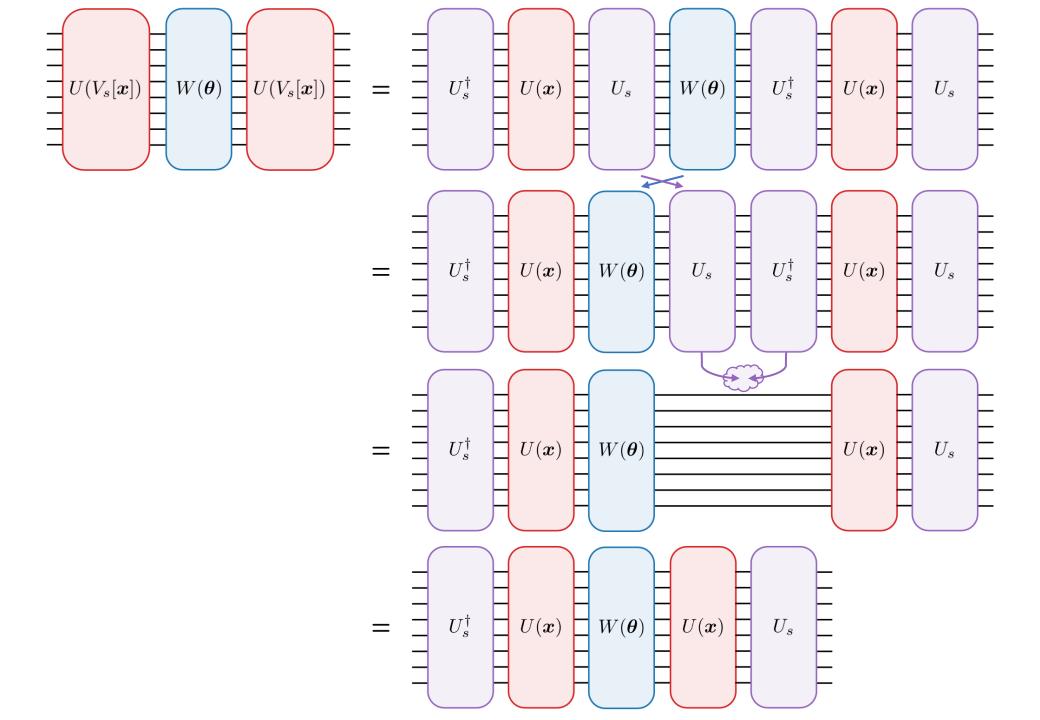
Original representation

Induced representation

Equivariant Layers



Layers need to **commute** with the induced representation



Invariant Model Recipe

$$y(V_s[\boldsymbol{x}]) = y(\boldsymbol{x}) \ \forall s \in \mathcal{S}$$

Invariant input state

$$U_s|\psi_0\rangle = |\psi_0\rangle$$

Equivariant

embeddings

$$U(V_s[\boldsymbol{x}]) = U_s^{\dagger} U(\boldsymbol{x}) U_s$$

Equivariant

layers

$$U_sW(\boldsymbol{\theta}) = W(\boldsymbol{\theta})U_s$$

Invariant

observable

$$U_s O U_s^{\dagger} = O$$

Equivariant Gatesets

How to construct equivariant layers?

Exploit the fact that concatenations of equivariant gates are again equivariant

Motivates equivariant gatesets

Regular gateset

$$\mathcal{G} = \{G_1, G_2, \dots\}$$

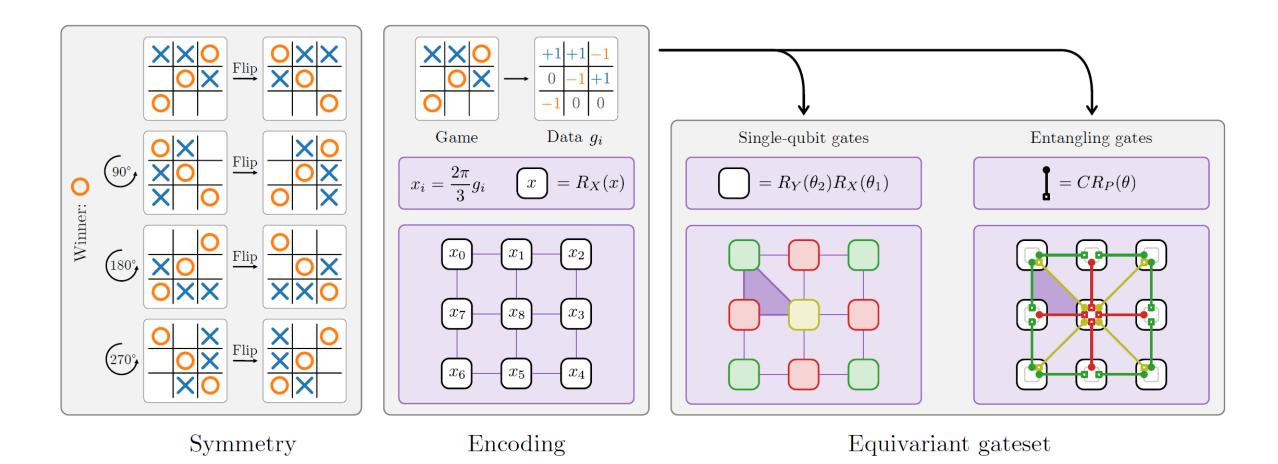
Group twirl

$$\mathcal{T}[G] = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} U_s G U_s^{\dagger}$$

Equivariant gateset

$$\mathcal{T}[\mathcal{G}] = \{\mathcal{T}[G_1], \mathcal{T}[G_2], \dots\}$$

Tic Tac Toe



Tic Tac Toe

Compare a regular reuploading model with a symmetrized one Run sweeps over different depths and randomized architectures Invariant models
have similar
performance in
training but much
better generalization
performance

 \int

Invariant models generically have better generalization

Further Results

- Analysis of different kinds of symmetries, both continuous and discrete
- Discussion of problems that can surface during the construction
- Further numerical experiments showcasing improved generalization
- We show that our techniques can also be applied to VQE and mitigate Barren Plateaus

Summary

- We need informed choices for parametrizations of variational quantum learning models
- Label invariance under a symmetry group provides such information
- We show if and how such information can be used to produce invariant quantum learning models
- The resulting models have less parameters and numerical experiments confirm their **better** generalization

Thank you for your attention!

Slides

Paper

